Surface ligand effects on metal-affinity coordination to quantum dots: implications for nanoprobe self-assembly.
نویسندگان
چکیده
The conjugation of biomolecules such as proteins and peptides to semiconductor quantum dots (QD) is a critical step in the development of QD-based imaging probes and nanocarriers. Such protein-QD assemblies can have a wide range of biological applications including in vitro protein assays and live-cell fluorescence imaging. One conjugation scheme that has a number of advantages is the self-assembly of biomolecules on a QD surface via polyhistidine coordination. This approach has been demonstrated using QDs that have different coating types, resulting in different interactions between the biomolecule and QD surface. Here, we report the use of a fluorescence resonance energy transfer (FRET) assay to evaluate the self-assembly of fluorescent proteins on the surface of QDs with eight distinct coatings, including several used in commercial preparations. The results of this systematic comparison can provide a basis for rational design of self-assembled biomolecule-QD complexes for biomedical applications.
منابع مشابه
Directed self-assembly of quantum structures by nanomechanical stamping using probe tips.
We demonstrate that nanomechanically stamped substrates can be used as templates to pattern and direct the self-assembly of epitaxial quantum structures such as quantum dots. Diamond probe tips are used to indent or stamp the surface of GaAs(100) to create nanoscale volumes of dislocation-mediated deformation, which alter the growth surface strain. These strained sites act to bias nucleation, h...
متن کاملEffects of different metal ions on the fluorescence of CdSe/ZnS quantum dots capped with various thiolate ligands.
In this report, we systematically studied the effects of different metal ions on the fluorescence of common thiolate ligand capped quantum dots. Generally, heavy metal ions exhibited much more significant fluorescence quenching. Also, the coordination capability and steric hindrance of the ligand jointly affect the quenching efficiency.
متن کاملWell-Controlled Arrays of Core-Shell Quantum Dots with Tunable Photoluminescence Properties
INTRODUCTION Metal surfaces influence the manner in which photoexcitation is converted to fluorescence emission from photoactive molecules through a complex interplay of enhancing and quenching mechanisms. Of fundamental scientific interest and technological importance is the possibility to precisely modify the electronic states in emitters by surface plasmons in metals. This capability could f...
متن کاملA self-assembled quantum dot probe for detecting beta-lactamase activity.
This communication describes a quantum dot probe that can be activated by a reporter enzyme, beta-lactamase. Our design is based on the principle of fluorescence resonance energy transfer (FRET). A biotinylated beta-lactamase substrate was labeled with a carbocyanine dye, Cy5, and immobilized on the surface of quantum dots through the binding of biotin to streptavidin pre-coated on the quantum ...
متن کاملAssembly kinetics of nanocrystals via peptide hybridization.
The assembly kinetics of colloidal semiconductor quantum dots (QDs) on solid inorganic surfaces is of fundamental importance for implementation of their solid-state devices. Herein an inorganic binding peptide, silica binding QBP1, was utilized for the self-assembly of nanocrystal quantum dots on silica surface as a smart molecular linker. The QD binding kinetics was studied comparatively in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioconjugate chemistry
دوره 21 7 شماره
صفحات -
تاریخ انتشار 2010